Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 3 de 3
Фильтр
1.
Physiol Rep ; 11(3): e15598, 2023 02.
Статья в английский | MEDLINE | ID: covidwho-2229083

Реферат

Hypertensive individuals taking anti-hypertensive drugs from renin-angiotensin system inhibitors may exhibit a more severe evolution of the disease when contracting the SARS-CoV-2 virus (COVID-19 disease) due to potential increases in ACE2 expression. The study investigated ACE1 and ACE2 axes and hydroxychloroquine in the lungs and adipose tissue of male and female normotensive Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHRs). SHRs were treated with losartan (10 mg/kg/day) or captopril (10 mg/kg/day) for 14 days or 7 days with hydroxychloroquine (200 mg/kg/day) in drinking water. WKY rats were also treated for 7 days with hydroxychloroquine. Blood pressure (BP), protein, and mRNA expression of ACE1 and ACE2 were analyzed in serum, adipose, and lung tissues. Losartan and captopril reduced BP in both sexes in SHR, whereas hydroxychloroquine increased BP in WKY rats. Losartan reduced ACE2 in serum and lungs in both sexes and in adipose tissue of male SHRs. Captopril decreased ACE2 protein in the lung of females and in adipose tissue in both sexes of SHRs. Hydroxychloroquine decreased ACE1 and ACE2 proteins in the lungs in both sexes and adipose tissue in male SHRs. In female WKY rats, ACE2 protein was lower only in the lungs and adipose tissue. Losartan effectively inhibited ACE2 in male and captopril in female SHRs. Hydroxychloroquine inhibited ACE2 in male SHRs and female WKY rats. These results further our understanding of the ACE2 mechanism in patients under renin-angiotensin anti-hypertensive therapy and in many trials using hydroxychloroquine for COVID-19 treatment and potential sex differences in response to drug treatment.


Тема - темы
COVID-19 , Hypertension , Animals , Female , Humans , Male , Rats , Adipose Tissue/metabolism , Angiotensin-Converting Enzyme 2 , Antihypertensive Agents/pharmacology , Blood Pressure , Captopril/therapeutic use , COVID-19 Drug Treatment , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Losartan/pharmacology , Lung/metabolism , Rats, Inbred SHR , Rats, Inbred WKY , SARS-CoV-2 , Peptidyl-Dipeptidase A/metabolism
2.
BMC Pharmacol Toxicol ; 22(1): 61, 2021 10 21.
Статья в английский | MEDLINE | ID: covidwho-1477468

Реферат

BACKGROUND: The emergence and rapid spread of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) in thelate 2019 has caused a devastating global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19). Although vaccines have been and are being developed, they are not accessible to everyone and not everyone can receive these vaccines. Also, it typically takes more than 10 years until a new therapeutic agent is approved for usage. Therefore, repurposing of known drugs can lend itself well as a key approach for significantly expediting the development of new therapies for COVID-19. METHODS: We have incorporated machine learning-based computational tools and in silico models into the drug discovery process to predict Adsorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) profiles of 90 potential drugs for COVID-19 treatment identified from two independent studies mainly with the purpose of mitigating late-phase failures because of inferior pharmacokinetics and toxicity. RESULTS: Here, we summarize the cardiotoxicity and general toxicity profiles of 90 potential drugs for COVID-19 treatment and outline the risks of repurposing and propose a stratification of patients accordingly. We shortlist a total of five compounds based on their non-toxic properties. CONCLUSION: In summary, this manuscript aims to provide a potentially useful source of essential knowledge on toxicity assessment of 90 compounds for healthcare practitioners and researchers to find off-label alternatives for the treatment for COVID-19. The majority of the molecules discussed in this manuscript have already moved into clinical trials and thus their known pharmacological and human safety profiles are expected to facilitate a fast track preclinical and clinical assessment for treating COVID-19.


Тема - темы
Antiviral Agents/toxicity , COVID-19 Drug Treatment , Drug Discovery , Drug Repositioning , Animals , Antiviral Agents/adverse effects , Captopril/therapeutic use , Cardiotoxins/toxicity , Catechols/therapeutic use , Computational Biology , Cytochrome P-450 Enzyme System/metabolism , Drug Discovery/methods , Humans , Indomethacin/therapeutic use , Linezolid/therapeutic use , Liver/drug effects , Mice , Models, Biological , Nitriles/therapeutic use , Rats , Reproduction/drug effects , Software , Valproic Acid/therapeutic use
3.
Zool Res ; 42(5): 633-636, 2021 Sep 18.
Статья в английский | MEDLINE | ID: covidwho-1369995

Реферат

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent responsible for the global coronavirus disease 2019 (COVID-19) pandemic. Numerous studies have demonstrated that cardiovascular disease may affect COVID-19 progression. In the present study, we investigated the effect of hypertension on viral replication and COVID-19 progression using a hypertensive mouse model infected with SARS-CoV-2. Results revealed that SARS-CoV-2 replication was delayed in hypertensive mouse lungs. In contrast, SARS-CoV-2 replication in hypertensive mice treated with the antihypertensive drug captopril demonstrated similar virus replication as SARS-CoV-2-infected normotensive mice. Furthermore, antihypertensive treatment alleviated lung inflammation induced by SARS-CoV-2 replication (interleukin (IL)-1ß up-regulation and increased immune cell infiltration). No differences in lung inflammation were observed between the SARS-CoV-2-infected normotensive mice and hypertensive mice. Our findings suggest that captopril treatment may alleviate COVID-19 progression but not affect viral replication.


Тема - темы
Antihypertensive Agents/therapeutic use , COVID-19/complications , Captopril/therapeutic use , Hypertension/complications , Lung Diseases/drug therapy , SARS-CoV-2 , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Antihypertensive Agents/pharmacology , Captopril/pharmacology , Gene Expression Regulation/drug effects , Inflammation/complications , Inflammation/drug therapy , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lung Diseases/etiology , Lung Diseases/virology , Mice , Virus Replication/drug effects
Критерии поиска